OpenPCDet框架中给出的NuScenes数据集的生成代码是基于LiDAR(或LiDAR + Camera)模态的,本文给出了在OpenPCDet框架中配置NuScenes数据集Radar模态的代码。
修改nuscenes_utils.py
:
"""
The NuScenes data pre-processing and evaluation is modified from
https://github.com/traveller59/second.pytorch and https://github.com/poodarchu/Det3D
"""
import operator
from functools import reduce
from pathlib import Path
import numpy as np
import tqdm
from nuscenes.utils.data_classes import Box
from nuscenes.utils.geometry_utils import transform_matrix
from pyquaternion import Quaternion
map_name_from_general_to_detection = {
'human.pedestrian.adult': 'pedestrian',
'human.pedestrian.child': 'pedestrian',
'human.pedestrian.wheelchair': 'ignore',
'human.pedestrian.stroller': 'ignore',
'human.pedestrian.personal_mobility': 'ignore',
'human.pedestrian.police_officer': 'pedestrian',
'human.pedestrian.construction_worker': 'pedestrian',
'animal': 'ignore',
'vehicle.car': 'car',
'vehicle.motorcycle': 'motorcycle',
'vehicle.bicycle': 'bicycle',
'vehicle.bus.bendy': 'bus',
'vehicle.bus.rigid': 'bus',
'vehicle.truck': 'truck',
'vehicle.construction': 'construction_vehicle',
'vehicle.emergency.ambulance': 'ignore',
'vehicle.emergency.police': 'ignore',
'vehicle.trailer': 'trailer',
'movable_object.barrier': 'barrier',
'movable_object.trafficcone': 'traffic_cone',
'movable_object.pushable_pullable': 'ignore',
'movable_object.debris': 'ignore',
'static_object.bicycle_rack': 'ignore',
}
cls_attr_dist = {
'barrier': {
'cycle.with_rider': 0,
'cycle.without_rider': 0,
'pedestrian.moving': 0,
'pedestrian.sitting_lying_down': 0,
'pedestrian.standing': 0,
'vehicle.moving': 0,
'vehicle.parked': 0,
'vehicle.stopped': 0,
},
'bicycle': {
'cycle.with_rider': 2791,
'cycle.without_rider': 8946,
'pedestrian.moving': 0,
'pedestrian.sitting_lying_down': 0,
'pedestrian.standing': 0,
'vehicle.moving': 0,
'vehicle.parked': 0,
'vehicle.stopped': 0,
},
'bus': {
'cycle.with_rider': 0,
'cycle.without_rider': 0,
'pedestrian.moving': 0,
'pedestrian.sitting_lying_down': 0,
'pedestrian.standing': 0,
'vehicle.moving': 9092,
'vehicle.parked': 3294,
'vehicle.stopped': 3881,
},
'car': {
'cycle.with_rider': 0,
'cycle.without_rider': 0,
'pedestrian.moving': 0,
'pedestrian.sitting_lying_down': 0,
'pedestrian.standing': 0,
'vehicle.moving': 114304,
'vehicle.parked': 330133,
'vehicle.stopped': 46898,
},
'construction_vehicle': {
'cycle.with_rider': 0,
'cycle.without_rider': 0,
'pedestrian.moving': 0,
'pedestrian.sitting_lying_down': 0,
'pedestrian.standing': 0,
'vehicle.moving': 882,
'vehicle.parked': 11549,
'vehicle.stopped': 2102,
},
'ignore': {
'cycle.with_rider': 307,
'cycle.without_rider': 73,
'pedestrian.moving': 0,
'pedestrian.sitting_lying_down': 0,
'pedestrian.standing': 0,
'vehicle.moving': 165,
'vehicle.parked': 400,
'vehicle.stopped': 102,
},
'motorcycle': {
'cycle.with_rider': 4233,
'cycle.without_rider': 8326,
'pedestrian.moving': 0,
'pedestrian.sitting_lying_down': 0,
'pedestrian.standing': 0,
'vehicle.moving': 0,
'vehicle.parked': 0,
'vehicle.stopped': 0,
},
'pedestrian': {
'cycle.with_rider': 0,
'cycle.without_rider': 0,
'pedestrian.moving': 157444,
'pedestrian.sitting_lying_down': 13939,
'pedestrian.standing': 46530,
'vehicle.moving': 0,
'vehicle.parked': 0,
'vehicle.stopped': 0,
},
'traffic_cone': {
'cycle.with_rider': 0,
'cycle.without_rider': 0,
'pedestrian.moving': 0,
'pedestrian.sitting_lying_down': 0,
'pedestrian.standing': 0,
'vehicle.moving': 0,
'vehicle.parked': 0,
'vehicle.stopped': 0,
},
'trailer': {
'cycle.with_rider': 0,
'cycle.without_rider': 0,
'pedestrian.moving': 0,
'pedestrian.sitting_lying_down': 0,
'pedestrian.standing': 0,
'vehicle.moving': 3421,
'vehicle.parked': 19224,
'vehicle.stopped': 1895,
},
'truck': {
'cycle.with_rider': 0,
'cycle.without_rider': 0,
'pedestrian.moving': 0,
'pedestrian.sitting_lying_down': 0,
'pedestrian.standing': 0,
'vehicle.moving': 21339,
'vehicle.parked': 55626,
'vehicle.stopped': 11097,
},
}
def get_available_scenes(nusc):
'''
获取所有的scenes(场景)。
scene是20s的视频数据,一个scene中有若干个sample(关键帧),
sample_data是关键帧的数据,包括lidar、camera等各个传感器的数据。
'''
available_scenes = []
print('total scene num:', len(nusc.scene))
for scene in nusc.scene:
scene_token = scene['token']
scene_rec = nusc.get('scene', scene_token)
sample_rec = nusc.get('sample', scene_rec['first_sample_token'])
sd_rec = nusc.get('sample_data', sample_rec['data']['LIDAR_TOP'])
has_more_frames = True
scene_not_exist = False
while has_more_frames:
lidar_path, boxes, _ = nusc.get_sample_data(sd_rec['token'])
if not Path(lidar_path).exists():
scene_not_exist = True
break
else:
break
# if not sd_rec['next'] == '':
# sd_rec = nusc.get('sample_data', sd_rec['next'])
# else:
# has_more_frames = False
if scene_not_exist:
continue
available_scenes.append(scene)
print('exist scene num:', len(available_scenes))
return available_scenes
def get_sample_data(nusc, sample_data_token, selected_anntokens=None):
"""
Returns the data path as well as all annotations related to that sample_data.
Note that the boxes are transformed into the current sensor's coordinate frame.
Args:
nusc:
sample_data_token: Sample_data token.
selected_anntokens: If provided only return the selected annotation.
Returns:
"""
# Retrieve sensor & pose records
sd_record = nusc.get('sample_data', sample_data_token) # 关键帧数据token
cs_record = nusc.get('calibrated_sensor', sd_record['calibrated_sensor_token']) # 校准的传感器记录
sensor_record = nusc.get('sensor', cs_record['sensor_token']) # 传感器记录
pose_record = nusc.get('ego_pose', sd_record['ego_pose_token']) # 车辆姿态记录
data_path = nusc.get_sample_data_path(sample_data_token)
# 如果是相机数据,获取相机内参
if sensor_record['modality'] == 'camera':
cam_intrinsic = np.array(cs_record['camera_intrinsic'])
imsize = (sd_record['width'], sd_record['height'])
else:
cam_intrinsic = imsize = None
# Retrieve all sample annotations and map to sensor coordinate system.
# 获取所有的sample annotations,并映射到传感器坐标系
if selected_anntokens is not None:
boxes = list(map(nusc.get_box, selected_anntokens))
else:
boxes = nusc.get_boxes(sample_data_token)
# Make list of Box objects including coord system transforms.
# 生成Box对象列表,包括坐标系变换
box_list = []
for box in boxes:
box.velocity = nusc.box_velocity(box.token)
# Move box to ego vehicle coord system
box.translate(-np.array(pose_record['translation']))
box.rotate(Quaternion(pose_record['rotation']).inverse)
# Move box to sensor coord system
box.translate(-np.array(cs_record['translation']))
box.rotate(Quaternion(cs_record['rotation']).inverse)
box_list.append(box)
return data_path, box_list, cam_intrinsic
def quaternion_yaw(q: Quaternion) -> float:
"""
Calculate the yaw angle from a quaternion.
Note that this only works for a quaternion that represents a box in lidar or global coordinate frame.
It does not work for a box in the camera frame.
:param q: Quaternion of interest.
:return: Yaw angle in radians.
"""
# Project into xy plane.
v = np.dot(q.rotation_matrix, np.array([1, 0, 0]))
# Measure yaw using arctan.
yaw = np.arctan2(v[1], v[0])
return yaw
def obtain_sensor2top(
nusc, sensor_token, l2e_t, l2e_r_mat, e2g_t, e2g_r_mat, sensor_type="lidar"
):
"""Obtain the info with RT matric from general sensor to Top LiDAR.
Args:
nusc (class): Dataset class in the nuScenes dataset.
sensor_token (str): Sample data token corresponding to the
specific sensor type.
l2e_t (np.ndarray): Translation from lidar to ego in shape (1, 3).
l2e_r_mat (np.ndarray): Rotation matrix from lidar to ego
in shape (3, 3).
e2g_t (np.ndarray): Translation from ego to global in shape (1, 3).
e2g_r_mat (np.ndarray): Rotation matrix from ego to global
in shape (3, 3).
sensor_type (str): Sensor to calibrate. Default: 'lidar'.
Returns:
sweep (dict): Sweep information after transformation.
"""
sd_rec = nusc.get("sample_data", sensor_token)
cs_record = nusc.get("calibrated_sensor", sd_rec["calibrated_sensor_token"])
pose_record = nusc.get("ego_pose", sd_rec["ego_pose_token"])
data_path = str(nusc.get_sample_data_path(sd_rec["token"]))
# if os.getcwd() in data_path: # path from lyftdataset is absolute path
# data_path = data_path.split(f"{os.getcwd()}/")[-1] # relative path
sweep = {
"data_path": data_path,
"type": sensor_type,
"sample_data_token": sd_rec["token"],
"sensor2ego_translation": cs_record["translation"],
"sensor2ego_rotation": cs_record["rotation"],
"ego2global_translation": pose_record["translation"],
"ego2global_rotation": pose_record["rotation"],
"timestamp": sd_rec["timestamp"],
}
l2e_r_s = sweep["sensor2ego_rotation"]
l2e_t_s = sweep["sensor2ego_translation"]
e2g_r_s = sweep["ego2global_rotation"]
e2g_t_s = sweep["ego2global_translation"]
# obtain the RT from sensor to Top LiDAR
# sweep->ego->global->ego'->lidar
l2e_r_s_mat = Quaternion(l2e_r_s).rotation_matrix
e2g_r_s_mat = Quaternion(e2g_r_s).rotation_matrix
R = (l2e_r_s_mat.T @ e2g_r_s_mat.T) @ (
np.linalg.inv(e2g_r_mat).T @ np.linalg.inv(l2e_r_mat).T
)
T = (l2e_t_s @ e2g_r_s_mat.T + e2g_t_s) @ (
np.linalg.inv(e2g_r_mat).T @ np.linalg.inv(l2e_r_mat).T
)
T -= (
e2g_t @ (np.linalg.inv(e2g_r_mat).T @ np.linalg.inv(l2e_r_mat).T)
+ l2e_t @ np.linalg.inv(l2e_r_mat).T
).squeeze(0)
sweep["sensor2lidar_rotation"] = R.T # points @ R.T + T
sweep["sensor2lidar_translation"] = T
return sweep
def fill_trainval_infos(data_path, nusc, train_scenes, val_scenes, test=False, max_sweeps=10, with_cam=False):
train_nusc_infos = []
val_nusc_infos = []
progress_bar = tqdm.tqdm(total=len(nusc.sample), desc='create_info', dynamic_ncols=True)
radar_channels = [
'RADAR_FRONT', 'RADAR_FRONT_LEFT', 'RADAR_FRONT_RIGHT', 'RADAR_BACK_LEFT', 'RADAR_BACK_RIGHT'
]
for index, sample in enumerate(nusc.sample):
progress_bar.update()
# 参考通道
ref_chan = 'RADAR_FRONT'
chan = radar_channels # 这里使用所有Radar通道
ref_sd_token = sample['data'][ref_chan]
ref_sd_rec = nusc.get('sample_data', ref_sd_token)
ref_cs_rec = nusc.get('calibrated_sensor', ref_sd_rec['calibrated_sensor_token'])
ref_pose_rec = nusc.get('ego_pose', ref_sd_rec['ego_pose_token'])
ref_time = 1e-6 * ref_sd_rec['timestamp']
ref_lidar_path, ref_boxes, _ = get_sample_data(nusc, ref_sd_token)
ref_cam_front_token = sample['data']['CAM_FRONT']
ref_cam_path, _, ref_cam_intrinsic = nusc.get_sample_data(ref_cam_front_token)
# Homogeneous transform from ego car frame to reference frame
ref_from_car = transform_matrix(
ref_cs_rec['translation'], Quaternion(ref_cs_rec['rotation']), inverse=True
)
# Homogeneous transformation matrix from global to _current_ ego car frame
car_from_global = transform_matrix(
ref_pose_rec['translation'], Quaternion(ref_pose_rec['rotation']), inverse=True,
)
info = {
'lidar_path': Path(ref_lidar_path).relative_to(data_path).__str__(),
'cam_front_path': Path(ref_cam_path).relative_to(data_path).__str__(),
'cam_intrinsic': ref_cam_intrinsic,
'token': sample['token'],
'sweeps': [],
'ref_from_car': ref_from_car,
'car_from_global': car_from_global,
'timestamp': ref_time,
}
if with_cam:
info['cams'] = dict()
l2e_r = ref_cs_rec["rotation"]
l2e_t = ref_cs_rec["translation"],
e2g_r = ref_pose_rec["rotation"]
e2g_t = ref_pose_rec["translation"]
l2e_r_mat = Quaternion(l2e_r).rotation_matrix
e2g_r_mat = Quaternion(e2g_r).rotation_matrix
# obtain 6 image's information per frame
camera_types = [
"CAM_FRONT",
"CAM_FRONT_RIGHT",
"CAM_FRONT_LEFT",
"CAM_BACK",
"CAM_BACK_LEFT",
"CAM_BACK_RIGHT",
]
for cam in camera_types:
cam_token = sample["data"][cam]
cam_path, _, camera_intrinsics = nusc.get_sample_data(cam_token)
cam_info = obtain_sensor2top(
nusc, cam_token, l2e_t, l2e_r_mat, e2g_t, e2g_r_mat, cam
)
cam_info['data_path'] = Path(cam_info['data_path']).relative_to(data_path).__str__()
cam_info.update(camera_intrinsics=camera_intrinsics)
info["cams"].update({cam: cam_info})
# 获取每个雷达通道的点云特征
radars_sweeps = []
for chan in radar_channels:
sample_data_token = sample['data'][chan]
curr_sd_rec = nusc.get('sample_data', sample_data_token)
sweeps = []
# radar_path, _, _ = get_sample_data(nusc, sample_data_token)
# radar_path = nusc.get_sample_data_path(curr_sd_rec['token'])
while len(sweeps) < max_sweeps - 1:
if curr_sd_rec['prev'] == '':
if len(sweeps) == 0:
sweep = {
'lidar_path': Path(ref_lidar_path).relative_to(data_path).__str__(),
'sample_data_token': curr_sd_rec['token'],
'transform_matrix': None,
'time_lag': curr_sd_rec['timestamp'] * 0,
}
sweeps.append(sweep)
else:
sweeps.append(sweeps[-1])
else:
curr_sd_rec = nusc.get('sample_data', curr_sd_rec['prev'])
# Get past pose
current_pose_rec = nusc.get('ego_pose', curr_sd_rec['ego_pose_token'])
global_from_car = transform_matrix(
current_pose_rec['translation'], Quaternion(current_pose_rec['rotation']), inverse=False,
)
# Homogeneous transformation matrix from sensor coordinate frame to ego car frame.
current_cs_rec = nusc.get(
'calibrated_sensor', curr_sd_rec['calibrated_sensor_token']
)
car_from_current = transform_matrix(
current_cs_rec['translation'], Quaternion(current_cs_rec['rotation']), inverse=False,
)
tm = reduce(np.dot, [ref_from_car, car_from_global, global_from_car, car_from_current])
lidar_path = nusc.get_sample_data_path(curr_sd_rec['token'])
time_lag = ref_time - 1e-6 * curr_sd_rec['timestamp']
sweep = {
'lidar_path': Path(lidar_path).relative_to(data_path).__str__(),
'sample_data_token': curr_sd_rec['token'],
'transform_matrix': tm,
'global_from_car': global_from_car,
'car_from_current': car_from_current,
'time_lag': time_lag,
}
sweeps.append(sweep)
# info['sweeps'] = sweeps
radars_sweeps.append(sweeps)
# assert len(info['sweeps']) == max_sweeps - 1, \
# f"sweep {curr_sd_rec['token']} only has {len(info['sweeps'])} sweeps, " \
# f"you should duplicate to sweep num {max_sweeps - 1}"
assert len(sweeps) == max_sweeps - 1, \
f"sweep {curr_sd_rec['token']} only has {len(sweeps)} sweeps, " \
f"you should duplicate to sweep num {max_sweeps - 1}"
info['sweeps'] = radars_sweeps
if not test:
annotations = [nusc.get('sample_annotation', token) for token in sample['anns']]
# the filtering gives 0.5~1 map improvement
num_lidar_pts = np.array([anno['num_lidar_pts'] for anno in annotations])
num_radar_pts = np.array([anno['num_radar_pts'] for anno in annotations])
mask = (num_lidar_pts + num_radar_pts > 0)
locs = np.array([b.center for b in ref_boxes]).reshape(-1, 3)
dims = np.array([b.wlh for b in ref_boxes]).reshape(-1, 3)[:, [1, 0, 2]] # wlh == > dxdydz (lwh)
velocity = np.array([b.velocity for b in ref_boxes]).reshape(-1, 3)
rots = np.array([quaternion_yaw(b.orientation) for b in ref_boxes]).reshape(-1, 1)
names = np.array([b.name for b in ref_boxes])
tokens = np.array([b.token for b in ref_boxes])
gt_boxes = np.concatenate([locs, dims, rots, velocity[:, :2]], axis=1)
assert len(annotations) == len(gt_boxes) == len(velocity)
info['gt_boxes'] = gt_boxes[mask, :]
info['gt_boxes_velocity'] = velocity[mask, :]
info['gt_names'] = np.array([map_name_from_general_to_detection[name] for name in names])[mask]
info['gt_boxes_token'] = tokens[mask]
info['num_lidar_pts'] = num_lidar_pts[mask]
info['num_radar_pts'] = num_radar_pts[mask]
if sample['scene_token'] in train_scenes:
train_nusc_infos.append(info)
else:
val_nusc_infos.append(info)
progress_bar.close()
return train_nusc_infos, val_nusc_infos
def boxes_lidar_to_nusenes(det_info):
boxes3d = det_info['boxes_lidar']
scores = det_info['score']
labels = det_info['pred_labels']
box_list = []
for k in range(boxes3d.shape[0]):
quat = Quaternion(axis=[0, 0, 1], radians=boxes3d[k, 6])
velocity = (*boxes3d[k, 7:9], 0.0) if boxes3d.shape[1] == 9 else (0.0, 0.0, 0.0)
box = Box(
boxes3d[k, :3],
boxes3d[k, [4, 3, 5]], # wlh
quat, label=labels[k], score=scores[k], velocity=velocity,
)
box_list.append(box)
return box_list
def lidar_nusc_box_to_global(nusc, boxes, sample_token):
s_record = nusc.get('sample', sample_token)
sample_data_token = s_record['data']['LIDAR_TOP']
sd_record = nusc.get('sample_data', sample_data_token)
cs_record = nusc.get('calibrated_sensor', sd_record['calibrated_sensor_token'])
sensor_record = nusc.get('sensor', cs_record['sensor_token'])
pose_record = nusc.get('ego_pose', sd_record['ego_pose_token'])
data_path = nusc.get_sample_data_path(sample_data_token)
box_list = []
for box in boxes:
# Move box to ego vehicle coord system
box.rotate(Quaternion(cs_record['rotation']))
box.translate(np.array(cs_record['translation']))
# Move box to global coord system
box.rotate(Quaternion(pose_record['rotation']))
box.translate(np.array(pose_record['translation']))
box_list.append(box)
return box_list
def transform_det_annos_to_nusc_annos(det_annos, nusc):
nusc_annos = {
'results': {},
'meta': None,
}
for det in det_annos:
annos = []
box_list = boxes_lidar_to_nusenes(det)
box_list = lidar_nusc_box_to_global(
nusc=nusc, boxes=box_list, sample_token=det['metadata']['token']
)
for k, box in enumerate(box_list):
name = det['name'][k]
if np.sqrt(box.velocity[0] ** 2 + box.velocity[1] ** 2) > 0.2:
if name in ['car', 'construction_vehicle', 'bus', 'truck', 'trailer']:
attr = 'vehicle.moving'
elif name in ['bicycle', 'motorcycle']:
attr = 'cycle.with_rider'
else:
attr = None
else:
if name in ['pedestrian']:
attr = 'pedestrian.standing'
elif name in ['bus']:
attr = 'vehicle.stopped'
else:
attr = None
attr = attr if attr is not None else max(
cls_attr_dist[name].items(), key=operator.itemgetter(1))[0]
nusc_anno = {
'sample_token': det['metadata']['token'],
'translation': box.center.tolist(),
'size': box.wlh.tolist(),
'rotation': box.orientation.elements.tolist(),
'velocity': box.velocity[:2].tolist(),
'detection_name': name,
'detection_score': box.score,
'attribute_name': attr
}
annos.append(nusc_anno)
nusc_annos['results'].update({det["metadata"]["token"]: annos})
return nusc_annos
def format_nuscene_results(metrics, class_names, version='default'):
result = '----------------Nuscene %s results-----------------\n' % version
for name in class_names:
threshs = ', '.join(list(metrics['label_aps'][name].keys()))
ap_list = list(metrics['label_aps'][name].values())
err_name =', '.join([x.split('_')[0] for x in list(metrics['label_tp_errors'][name].keys())])
error_list = list(metrics['label_tp_errors'][name].values())
result += f'***{name} error@{err_name} | AP@{threshs}\n'
result += ', '.join(['%.2f' % x for x in error_list]) + ' | '
result += ', '.join(['%.2f' % (x * 100) for x in ap_list])
result += f" | mean AP: {metrics['mean_dist_aps'][name]}"
result += '\n'
result += '--------------average performance-------------\n'
details = {}
for key, val in metrics['tp_errors'].items():
result += '%s:\t %.4f\n' % (key, val)
details[key] = val
result += 'mAP:\t %.4f\n' % metrics['mean_ap']
result += 'NDS:\t %.4f\n' % metrics['nd_score']
details.update({
'mAP': metrics['mean_ap'],
'NDS': metrics['nd_score'],
})
return result, details
修改nuscenes_dataset.py
:
import copy
import pickle
import struct
from pathlib import Path
import numpy as np
from tqdm import tqdm
from ...ops.roiaware_pool3d import roiaware_pool3d_utils
from ...utils import common_utils
from ..dataset import DatasetTemplate
from pyquaternion import Quaternion
from PIL import Image
class NuScenesDataset(DatasetTemplate):
def __init__(self, dataset_cfg, class_names, training=True, root_path=None, logger=None):
root_path = (root_path if root_path is not None else Path(dataset_cfg.DATA_PATH)) / dataset_cfg.VERSION
super().__init__(
dataset_cfg=dataset_cfg, class_names=class_names, training=training, root_path=root_path, logger=logger
)
self.infos = []
self.camera_config = self.dataset_cfg.get('CAMERA_CONFIG', None)
if self.camera_config is not None:
self.use_camera = self.camera_config.get('USE_CAMERA', True)
self.camera_image_config = self.camera_config.IMAGE
else:
self.use_camera = False
self.include_nuscenes_data(self.mode)
if self.training and self.dataset_cfg.get('BALANCED_RESAMPLING', False):
self.infos = self.balanced_infos_resampling(self.infos)
def include_nuscenes_data(self, mode):
self.logger.info('Loading NuScenes dataset')
nuscenes_infos = []
for info_path in self.dataset_cfg.INFO_PATH[mode]:
info_path = self.root_path / info_path
if not info_path.exists():
continue
with open(info_path, 'rb') as f:
infos = pickle.load(f)
nuscenes_infos.extend(infos)
self.infos.extend(nuscenes_infos)
self.logger.info('Total samples for NuScenes dataset: %d' % (len(nuscenes_infos)))
def balanced_infos_resampling(self, infos):
"""
Class-balanced sampling of nuScenes dataset from https://arxiv.org/abs/1908.09492
"""
if self.class_names is None:
return infos
cls_infos = {name: [] for name in self.class_names}
for info in infos:
for name in set(info['gt_names']):
if name in self.class_names:
cls_infos[name].append(info)
duplicated_samples = sum([len(v) for _, v in cls_infos.items()])
cls_dist = {k: len(v) / duplicated_samples for k, v in cls_infos.items()}
sampled_infos = []
frac = 1.0 / len(self.class_names)
ratios = [frac / v for v in cls_dist.values()]
for cur_cls_infos, ratio in zip(list(cls_infos.values()), ratios):
sampled_infos += np.random.choice(
cur_cls_infos, int(len(cur_cls_infos) * ratio)
).tolist()
self.logger.info('Total samples after balanced resampling: %s' % (len(sampled_infos)))
cls_infos_new = {name: [] for name in self.class_names}
for info in sampled_infos:
for name in set(info['gt_names']):
if name in self.class_names:
cls_infos_new[name].append(info)
cls_dist_new = {k: len(v) / len(sampled_infos) for k, v in cls_infos_new.items()}
return sampled_infos
def get_radar_points_sweep(self, lidar_path):
############# specified for Radar data #################
assert str(lidar_path).endswith('.pcd'), 'Unsupported filetype {}'.format(str(lidar_path))
meta = []
with open(str(lidar_path), 'rb') as f:
for line in f:
line = line.strip().decode('utf-8')
meta.append(line)
if line.startswith('DATA'):
break
data_binary = f.read()
# Get the header rows and check if they appear as expected.
assert meta[0].startswith('#'), 'First line must be comment'
assert meta[1].startswith('VERSION'), 'Second line must be VERSION'
sizes = meta[3].split(' ')[1:]
types = meta[4].split(' ')[1:]
counts = meta[5].split(' ')[1:]
width = int(meta[6].split(' ')[1])
height = int(meta[7].split(' ')[1])
data = meta[10].split(' ')[1]
feature_count = len(types)
assert width > 0
assert len([c for c in counts if c != c]) == 0, 'Error: COUNT not supported!'
assert height == 1, 'Error: height != 0 not supported!'
assert data == 'binary'
# Lookup table for how to decode the binaries.
unpacking_lut = {'F': {2: 'e', 4: 'f', 8: 'd'},
'I': {1: 'b', 2: 'h', 4: 'i', 8: 'q'},
'U': {1: 'B', 2: 'H', 4: 'I', 8: 'Q'}}
types_str = ''.join([unpacking_lut[t][int(s)] for t, s in zip(types, sizes)])
# Decode each point.
offset = 0
point_count = width
points = []
for i in range(point_count):
point = []
for p in range(feature_count):
start_p = offset
end_p = start_p + int(sizes[p])
assert end_p < len(data_binary)
point_p = struct.unpack(types_str[p], data_binary[start_p:end_p])[0]
point.append(point_p)
offset = end_p
points.append(point)
# A NaN in the first point indicates an empty pointcloud.
point = np.array(points[0])
if np.any(np.isnan(point)):
points = np.zeros((0, feature_count))
# Convert to numpy matrix.
points = np.array(points).transpose()
invalid_states = [0]
dynprop_states = range(7)
ambig_states = [3]
# Filter points with an invalid state.
valid = [p in invalid_states for p in points[-4, :]]
points = points[:, valid]
# Filter by dynProp.
valid = [p in dynprop_states for p in points[3, :]]
points = points[:, valid]
# Filter by ambig_state.
valid = [p in ambig_states for p in points[11, :]]
points = points[:, valid]
return points
###################################################
def get_sweep(self, sweep_info):
# def remove_ego_points(points, center_radius=1.0):
# mask = ~((np.abs(points[:, 0]) < center_radius) & (np.abs(points[:, 1]) < center_radius))
# return points[mask]
def remove_ego_points(points, center_radius=1.0):
mask = ~((np.abs(points[0, :]) < center_radius) & (np.abs(points[1, :]) < center_radius))
return points.T[mask].T
lidar_path = self.root_path / sweep_info['lidar_path']
# points_sweep = np.fromfile(str(lidar_path), dtype=np.float32, count=-1).reshape([-1, 5])[:, :4]
points_sweep = self.get_radar_points_sweep(lidar_path)
points_sweep = remove_ego_points(points_sweep)
if sweep_info['transform_matrix'] is not None:
num_points = points_sweep.shape[1]
points_sweep[:3, :] = sweep_info['transform_matrix'].dot(
np.vstack((points_sweep[:3, :], np.ones(num_points))))[:3, :]
cur_times = sweep_info['time_lag'] * np.ones((1, points_sweep.shape[1]))
return points_sweep.T, cur_times.T
def get_lidar_with_sweeps(self, index, max_sweeps=1):
info = self.infos[index]
lidar_path = self.root_path / info['lidar_path']
# points = np.fromfile(str(lidar_path), dtype=np.float32, count=-1).reshape([-1, 5])[:, :4]
points = self.get_radar_points_sweep(lidar_path).T
# print(points.shape)
sweep_points_list = [points]
sweep_times_list = [np.zeros((points.shape[0], 1))]
for radar_sweeps in info['sweeps']:
for k in np.random.choice(len(radar_sweeps), max_sweeps - 1, replace=False):
points_sweep, times_sweep = self.get_sweep(radar_sweeps[k])
# print(points_sweep.shape)
sweep_points_list.append(points_sweep)
sweep_times_list.append(times_sweep)
points = np.concatenate(sweep_points_list, axis=0)
times = np.concatenate(sweep_times_list, axis=0).astype(points.dtype)
points = np.concatenate((points, times), axis=1)
return points
def crop_image(self, input_dict):
W, H = input_dict["ori_shape"]
imgs = input_dict["camera_imgs"]
img_process_infos = []
crop_images = []
for img in imgs:
if self.training == True:
fH, fW = self.camera_image_config.FINAL_DIM
resize_lim = self.camera_image_config.RESIZE_LIM_TRAIN
resize = np.random.uniform(*resize_lim)
resize_dims = (int(W * resize), int(H * resize))
newW, newH = resize_dims
crop_h = newH - fH
crop_w = int(np.random.uniform(0, max(0, newW - fW)))
crop = (crop_w, crop_h, crop_w + fW, crop_h + fH)
else:
fH, fW = self.camera_image_config.FINAL_DIM
resize_lim = self.camera_image_config.RESIZE_LIM_TEST
resize = np.mean(resize_lim)
resize_dims = (int(W * resize), int(H * resize))
newW, newH = resize_dims
crop_h = newH - fH
crop_w = int(max(0, newW - fW) / 2)
crop = (crop_w, crop_h, crop_w + fW, crop_h + fH)
# reisze and crop image
img = img.resize(resize_dims)
img = img.crop(crop)
crop_images.append(img)
img_process_infos.append([resize, crop, False, 0])
input_dict['img_process_infos'] = img_process_infos
input_dict['camera_imgs'] = crop_images
return input_dict
def load_camera_info(self, input_dict, info):
input_dict["image_paths"] = []
input_dict["lidar2camera"] = []
input_dict["lidar2image"] = []
input_dict["camera2ego"] = []
input_dict["camera_intrinsics"] = []
input_dict["camera2lidar"] = []
for _, camera_info in info["cams"].items():
input_dict["image_paths"].append(camera_info["data_path"])
# lidar to camera transform
lidar2camera_r = np.linalg.inv(camera_info["sensor2lidar_rotation"])
lidar2camera_t = (
camera_info["sensor2lidar_translation"] @ lidar2camera_r.T
)
lidar2camera_rt = np.eye(4).astype(np.float32)
lidar2camera_rt[:3, :3] = lidar2camera_r.T
lidar2camera_rt[3, :3] = -lidar2camera_t
input_dict["lidar2camera"].append(lidar2camera_rt.T)
# camera intrinsics
camera_intrinsics = np.eye(4).astype(np.float32)
camera_intrinsics[:3, :3] = camera_info["camera_intrinsics"]
input_dict["camera_intrinsics"].append(camera_intrinsics)
# lidar to image transform
lidar2image = camera_intrinsics @ lidar2camera_rt.T
input_dict["lidar2image"].append(lidar2image)
# camera to ego transform
camera2ego = np.eye(4).astype(np.float32)
camera2ego[:3, :3] = Quaternion(
camera_info["sensor2ego_rotation"]
).rotation_matrix
camera2ego[:3, 3] = camera_info["sensor2ego_translation"]
input_dict["camera2ego"].append(camera2ego)
# camera to lidar transform
camera2lidar = np.eye(4).astype(np.float32)
camera2lidar[:3, :3] = camera_info["sensor2lidar_rotation"]
camera2lidar[:3, 3] = camera_info["sensor2lidar_translation"]
input_dict["camera2lidar"].append(camera2lidar)
# read image
filename = input_dict["image_paths"]
images = []
for name in filename:
images.append(Image.open(str(self.root_path / name)))
input_dict["camera_imgs"] = images
input_dict["ori_shape"] = images[0].size
# resize and crop image
input_dict = self.crop_image(input_dict)
return input_dict
def __len__(self):
if self._merge_all_iters_to_one_epoch:
return len(self.infos) * self.total_epochs
return len(self.infos)
def __getitem__(self, index):
if self._merge_all_iters_to_one_epoch:
index = index % len(self.infos)
info = copy.deepcopy(self.infos[index])
points = self.get_lidar_with_sweeps(index, max_sweeps=self.dataset_cfg.MAX_SWEEPS)
input_dict = {
'points': points,
'frame_id': Path(info['lidar_path']).stem,
'metadata': {'token': info['token']}
}
if 'gt_boxes' in info:
if self.dataset_cfg.get('FILTER_MIN_POINTS_IN_GT', False):
mask = (info['num_lidar_pts'] > self.dataset_cfg.FILTER_MIN_POINTS_IN_GT - 1)
else:
mask = None
input_dict.update({
'gt_names': info['gt_names'] if mask is None else info['gt_names'][mask],
'gt_boxes': info['gt_boxes'] if mask is None else info['gt_boxes'][mask]
})
if self.use_camera:
input_dict = self.load_camera_info(input_dict, info)
data_dict = self.prepare_data(data_dict=input_dict)
if self.dataset_cfg.get('SET_NAN_VELOCITY_TO_ZEROS', False) and 'gt_boxes' in info:
gt_boxes = data_dict['gt_boxes']
gt_boxes[np.isnan(gt_boxes)] = 0
data_dict['gt_boxes'] = gt_boxes
if not self.dataset_cfg.PRED_VELOCITY and 'gt_boxes' in data_dict:
data_dict['gt_boxes'] = data_dict['gt_boxes'][:, [0, 1, 2, 3, 4, 5, 6, -1]]
return data_dict
def evaluation(self, det_annos, class_names, **kwargs):
import json
from nuscenes.nuscenes import NuScenes
from . import nuscenes_utils
nusc = NuScenes(version=self.dataset_cfg.VERSION, dataroot=str(self.root_path), verbose=True)
nusc_annos = nuscenes_utils.transform_det_annos_to_nusc_annos(det_annos, nusc)
nusc_annos['meta'] = {
'use_camera': False,
'use_lidar': False,
'use_radar': True,
'use_map': False,
'use_external': False,
}
output_path = Path(kwargs['output_path'])
output_path.mkdir(exist_ok=True, parents=True)
res_path = str(output_path / 'results_nusc.json')
with open(res_path, 'w') as f:
json.dump(nusc_annos, f)
self.logger.info(f'The predictions of NuScenes have been saved to {res_path}')
if self.dataset_cfg.VERSION == 'v1.0-test':
return 'No ground-truth annotations for evaluation', {}
from nuscenes.eval.detection.config import config_factory
from nuscenes.eval.detection.evaluate import NuScenesEval
eval_set_map = {
'v1.0-mini': 'mini_val',
'v1.0-trainval': 'val',
'v1.0-test': 'test'
}
try:
eval_version = 'detection_cvpr_2019'
eval_config = config_factory(eval_version)
except:
eval_version = 'cvpr_2019'
eval_config = config_factory(eval_version)
nusc_eval = NuScenesEval(
nusc,
config=eval_config,
result_path=res_path,
eval_set=eval_set_map[self.dataset_cfg.VERSION],
output_dir=str(output_path),
verbose=True,
)
metrics_summary = nusc_eval.main(plot_examples=0, render_curves=False)
with open(output_path / 'metrics_summary.json', 'r') as f:
metrics = json.load(f)
result_str, result_dict = nuscenes_utils.format_nuscene_results(metrics, self.class_names, version=eval_version)
return result_str, result_dict
def create_groundtruth_database(self, used_classes=None, max_sweeps=10):
import torch
database_save_path = self.root_path / f'gt_database_{max_sweeps}sweeps_withvelo'
db_info_save_path = self.root_path / f'nuscenes_dbinfos_{max_sweeps}sweeps_withvelo.pkl'
database_save_path.mkdir(parents=True, exist_ok=True)
all_db_infos = {}
for idx in tqdm(range(len(self.infos))):
sample_idx = idx
info = self.infos[idx]
points = self.get_lidar_with_sweeps(idx, max_sweeps=max_sweeps)
gt_boxes = info['gt_boxes']
gt_names = info['gt_names']
box_idxs_of_pts = roiaware_pool3d_utils.points_in_boxes_gpu(
torch.from_numpy(points[:, 0:3]).unsqueeze(dim=0).float().cuda(),
torch.from_numpy(gt_boxes[:, 0:7]).unsqueeze(dim=0).float().cuda()
).long().squeeze(dim=0).cpu().numpy()
for i in range(gt_boxes.shape[0]):
filename = '%s_%s_%d.bin' % (sample_idx, gt_names[i], i)
filepath = database_save_path / filename
gt_points = points[box_idxs_of_pts == i]
gt_points[:, :3] -= gt_boxes[i, :3]
with open(filepath, 'w') as f:
gt_points.tofile(f)
if (used_classes is None) or gt_names[i] in used_classes:
db_path = str(filepath.relative_to(self.root_path)) # gt_database/xxxxx.bin
db_info = {'name': gt_names[i], 'path': db_path, 'image_idx': sample_idx, 'gt_idx': i,
'box3d_lidar': gt_boxes[i], 'num_points_in_gt': gt_points.shape[0]}
if gt_names[i] in all_db_infos:
all_db_infos[gt_names[i]].append(db_info)
else:
all_db_infos[gt_names[i]] = [db_info]
for k, v in all_db_infos.items():
print('Database %s: %d' % (k, len(v)))
with open(db_info_save_path, 'wb') as f:
pickle.dump(all_db_infos, f)
def create_nuscenes_info(version, data_path, save_path, max_sweeps=10, with_cam=False):
from nuscenes.nuscenes import NuScenes
from nuscenes.utils import splits
from . import nuscenes_utils
data_path = data_path / version
save_path = save_path / version
assert version in ['v1.0-trainval', 'v1.0-test', 'v1.0-mini']
if version == 'v1.0-trainval':
train_scenes = splits.train
val_scenes = splits.val
elif version == 'v1.0-test':
train_scenes = splits.test
val_scenes = []
elif version == 'v1.0-mini':
train_scenes = splits.mini_train
val_scenes = splits.mini_val
else:
raise NotImplementedError
nusc = NuScenes(version=version, dataroot=data_path, verbose=True)
available_scenes = nuscenes_utils.get_available_scenes(nusc)
available_scene_names = [s['name'] for s in available_scenes]
train_scenes = list(filter(lambda x: x in available_scene_names, train_scenes))
val_scenes = list(filter(lambda x: x in available_scene_names, val_scenes))
train_scenes = set([available_scenes[available_scene_names.index(s)]['token'] for s in train_scenes])
val_scenes = set([available_scenes[available_scene_names.index(s)]['token'] for s in val_scenes])
print('%s: train scene(%d), val scene(%d)' % (version, len(train_scenes), len(val_scenes)))
train_nusc_infos, val_nusc_infos = nuscenes_utils.fill_trainval_infos(
data_path=data_path, nusc=nusc, train_scenes=train_scenes, val_scenes=val_scenes,
test='test' in version, max_sweeps=max_sweeps, with_cam=with_cam
)
if version == 'v1.0-test':
print('test sample: %d' % len(train_nusc_infos))
with open(save_path / f'nuscenes_infos_{max_sweeps}sweeps_test.pkl', 'wb') as f:
pickle.dump(train_nusc_infos, f)
else:
print('train sample: %d, val sample: %d' % (len(train_nusc_infos), len(val_nusc_infos)))
with open(save_path / f'nuscenes_infos_{max_sweeps}sweeps_train.pkl', 'wb') as f:
pickle.dump(train_nusc_infos, f)
with open(save_path / f'nuscenes_infos_{max_sweeps}sweeps_val.pkl', 'wb') as f:
pickle.dump(val_nusc_infos, f)
if __name__ == '__main__':
import yaml
import argparse
from pathlib import Path
from easydict import EasyDict
parser = argparse.ArgumentParser(description='arg parser')
parser.add_argument('--cfg_file', type=str, default=None, help='specify the config of dataset')
parser.add_argument('--func', type=str, default='create_nuscenes_infos', help='')
parser.add_argument('--version', type=str, default='v1.0-trainval', help='')
parser.add_argument('--with_cam', action='store_true', default=False, help='use camera or not')
args = parser.parse_args()
if args.func == 'create_nuscenes_infos':
dataset_cfg = EasyDict(yaml.safe_load(open(args.cfg_file)))
ROOT_DIR = (Path(__file__).resolve().parent / '../../../').resolve()
dataset_cfg.VERSION = args.version
create_nuscenes_info(
version=dataset_cfg.VERSION,
data_path=ROOT_DIR / 'data' / 'nuscenes',
save_path=ROOT_DIR / 'data' / 'nuscenes',
max_sweeps=dataset_cfg.MAX_SWEEPS,
with_cam=args.with_cam
)
nuscenes_dataset = NuScenesDataset(
dataset_cfg=dataset_cfg, class_names=None,
root_path=ROOT_DIR / 'data' / 'nuscenes',
logger=common_utils.create_logger(), training=True
)
nuscenes_dataset.create_groundtruth_database(max_sweeps=dataset_cfg.MAX_SWEEPS)
配置nuscenes_dataset.yaml
:
DATASET: 'NuScenesDataset'
DATA_PATH: './data/nuscenes'
VERSION: 'v1.0-trainval'
MAX_SWEEPS: 10
PRED_VELOCITY: True
SET_NAN_VELOCITY_TO_ZEROS: True
FILTER_MIN_POINTS_IN_GT: 1
DATA_SPLIT: {
'train': train,
'test': val
}
INFO_PATH: {
'train': [nuscenes_infos_10sweeps_train.pkl],
'test': [nuscenes_infos_10sweeps_val.pkl],
}
POINT_CLOUD_RANGE: [-51.2, -51.2, -5.0, 51.2, 51.2, 3.0]
BALANCED_RESAMPLING: True
DATA_AUGMENTOR:
DISABLE_AUG_LIST: ['placeholder']
AUG_CONFIG_LIST:
- NAME: gt_sampling
DB_INFO_PATH:
- nuscenes_dbinfos_10sweeps_withvelo.pkl
PREPARE: {
filter_by_min_points: [
'car:5','truck:5', 'construction_vehicle:5', 'bus:5', 'trailer:5',
'barrier:5', 'motorcycle:5', 'bicycle:5', 'pedestrian:5', 'traffic_cone:5'
],
}
SAMPLE_GROUPS: [
'car:2','truck:3', 'construction_vehicle:7', 'bus:4', 'trailer:6',
'barrier:2', 'motorcycle:6', 'bicycle:6', 'pedestrian:2', 'traffic_cone:2'
]
NUM_POINT_FEATURES: 19
DATABASE_WITH_FAKELIDAR: False
REMOVE_EXTRA_WIDTH: [0.0, 0.0, 0.0]
LIMIT_WHOLE_SCENE: True
- NAME: random_world_flip
ALONG_AXIS_LIST: ['x', 'y']
- NAME: random_world_rotation
WORLD_ROT_ANGLE: [-0.3925, 0.3925]
- NAME: random_world_scaling
WORLD_SCALE_RANGE: [0.95, 1.05]
POINT_FEATURE_ENCODING: {
encoding_type: absolute_coordinates_encoding,
# used_feature_list: ['x', 'y', 'z', 'intensity', 'timestamp'],
# src_feature_list: ['x', 'y', 'z', 'intensity', 'timestamp'],
used_feature_list: ['x', 'y', 'z', 'rcs', 'vx', 'vy', 'vx_comp',
'vy_comp', 'x_rms', 'y_rms', 'vx_rms', 'vy_rms'],
src_feature_list: ['x', 'y', 'z', 'dyn_prop', 'id',
'rcs', 'vx', 'vy', 'vx_comp', 'vy_comp',
'is_quality_valid', 'ambig_state', 'x_rms',
'y_rms', 'invalid_state', 'pdh0', 'vx_rms',
'vy_rms', 'timestamp'],
}
DATA_PROCESSOR:
- NAME: mask_points_and_boxes_outside_range
REMOVE_OUTSIDE_BOXES: True
- NAME: shuffle_points
SHUFFLE_ENABLED: {
'train': True,
'test': True
}
- NAME: transform_points_to_voxels
VOXEL_SIZE: [0.1, 0.1, 0.2]
MAX_POINTS_PER_VOXEL: 10
MAX_NUMBER_OF_VOXELS: {
'train': 60000,
'test': 60000
}